Strumentazione e Sistemi di Misura (Ingegneria Elettronica)

Esercitazione di laboratorio

Uso dell'oscilloscopio digitale Umberto Pisani

Scopo

L'esercitazione consiste nell'addestramento all'uso di un oscilloscopio digitale (nelle sue varie funzionalità), nella misura del tempo di salita di una forma d'onda quadra, nella verifica di fenomeni di aliasing e della funzione AVERAGE presente nell'oscilloscopio.

1 Materiale a disposizione e considerazioni generali

Oltre agli strumenti comunemente presenti in laboratorio, per questa esercitazione avrete a disposizione:

- 1.1 Oscilloscopio digitale TDS380
- 1.2 Generatore di funzioni (sinusoidali, quadre, ecc..)
- 1.3 **Scheda** con generatore di segnali già utilizzata per le altre esercitazioni (rosso +12 V, nero -12 V, verde massa).
- 1.4 Basetta per montaggio e resistenze varie

Per le caratteristiche del generatore e dell'oscilloscopio digitale consultare il sito del LADISPE (Strumentazione). Sul sito è presente anche il **manuale dettagliato dell'oscilloscopio** in formato pdf.

2 Test funzionale dell'oscilloscopio

- 2.1 Utilizzare la sonda (attentatrice 10:1) in dotazione, e collegarla su CH1 al morsetto PROBE COMP sul pannello frontale. Il morsetto fornisce un segnale ad onda quadra utile per compensare la sonda. Verificare l'effetto dei controlli VOLT/DIV, POSITION (vert) e SEC/DIV
- 2.2 Verificare l'effetto del pulsante RUN/STOP (RUN acquisizione continua STOP congelamento dati in memoria) In condizioni di STOP si può osservare solo ciò che si è acquisito selezionando l'area di memoria rappresentata con la HORIZONTAL POSITION)

- 2.3 Selezionare il TRIGGER MENU→Mode Normal e verificare l'effetto della variazione del Trigger Level al valore minimo e massimo per cui il segnale non viene "triggerato".
- 2.4 Verificare che cosa succede se in Mode Normal il livello di trigger supera i valori MAX e MIN del segnale.
- 2.5 Verificare l'effetto del comando SET LEVEL TO 50% (il livello si pone automaticamente al 50% del picco-picco).
- 2.6 Regolare in modo da avere una rappresentazione di un solo periodo e circa 5 divisioni in ampiezza e verificare che la sonda sia compensata (eventualmente compensarla agendo con un cacciavite sulla regolazione presente sulla sonda).
- 2.7 Nell'HORIZONTAL MENU provare le funzioni analoghe a quelle **della base tempi ritardata** di un oscilloscopio analogico (**Intensified**, **Delayed only**) II delay time si varia con la manopola SELECT.

3 Misurazione del tempo di salita

- 3.1 Operazioni preliminari
 - Regolate il generatore di segnali in modo da erogare un segnale ad onda quadra, ampiezza 1V senza offset, frequenza 1 kHz.
 - o Collegate il generatore all'oscilloscopio con un cavo coassiale (Z0=50Ω, lunghezza l≅ 1m, C_c=100pF/m).
 - o Regolate l'oscilloscopio in modo da visualizzare il fronte di salita del segnale (es. 10 ns/div).

3.2 Misurazione 1

Il generatore di segnali fornisce impulsi con un tempo di salita pari al valore dichiarato se è caricato con impedenza uguale alla sua impedenza nominale di uscita (di solito 50Ω). Siccome l'impedenza d'ingresso dell'oscilloscopio è molto elevata non si ha l'adattamento di impedenza, anche se il collegamento generatore oscilloscopio è fatto mediante cavo coassiale con impedenza caratteristica di 50Ω .

- In queste condizioni il sistema in misura disadatta il generatore con l'effetto di distorcere il fronte di salita del segnale.
- La distorsione è dovuta a riflessioni multiple lungo il cavo coassiale ed appare come sovra-oscillazioni del fronte

L'oscilloscopio ha la possibilità di operare o a banda intera (FULL Bandwidth) oppure a banda limitata (20 MHz). Utilizzare l'opzione **full Bandwidth** (VERT MENU→ Bandwidth full→ Full Bandwidth)

 Provate a osservare il fronte del segnale nella opzione FULL Bandwidth e poi commutate in Bandwidth 20 MHz. (VERT MENU→ Bandwidth full→ 20MHz Bw) Notate che il fronte diventa più pulito. Cercate di spiegarvi il perché (E' un effettivo miglioramento del fronte oppure è l'effetto della scarsa banda del sistema?)

o Ritornate in **full Bandwidth** e misurate il tempo di salita con il generatore adattato inserendo in parallelo all'ingresso dell'oscilloscopio una terminazione resistiva di valore 50 Ω collegata tramite un connettore a T (vedi figura).

- \circ Notate che l'ampiezza del gradino si è ridotta a metà del valore della misura a vuoto e che il fronte assume un andamento "tranquillo". In queste condizioni il tempo di salita misurato corrisponde a quello dichiarato dal costruttore con il generatore caricato da 50 Ω
- La misura del tempo di salita può essere anche fatta utilizzando la funzione MEASURE→Select Measurements for CH1 →Rise Time

Risulta t_{s1} =ns.

 In queste condizioni la resistenza equivalente del generatore vista dall'oscilloscopio vale 25Ω e pertanto il filtro dovuto alle impedenze di accoppiamento tra generatore ed oscilloscopio (che ha impedenza di ingresso 1 MΩ ±1% in parallelo con 12 pF) ha una frequenza di taglio

 $F_{t} = \frac{1}{2 \times \pi \times 25 \times C_{eq}}$ dove Ceq è la capacità equivalente parallelo tra quella del cavo (\cong 100pF) e

quella dell'oscilloscopio (12 pF).

A questa F_t corrisponde un tempo di salita equivalente t_{ss} =0.35/ $F_{t\cong}$ ns.

Il valore misurato con l'oscilloscopio vale:

t_{s2}= ns.

 Calcolate ora il tempo di salita proprio dell'oscilloscopio a causa della sua banda passante B (full bandwidth dell'oscilloscopio)

 $t_{s0}=0.35/B=$ ns.

o Correggete l'effetto dell'oscilloscopio e del tempo di salita dovuto alla sonda

$$t_{s} = \sqrt{t_{s2}^{2} - t_{s0}^{2} - t_{ss}^{2}} = ns$$

- o Ripetete la misura utilizzando la sonda compensata e confrontare il valore misurato con il precedente
- o Ci sono variazioni? Motivate il risultato

3.3 Misurazione 2

Mettendovi nelle **stesse condizioni di Misurazione 1** ripetete la misura utilizzando l'opzione **banda limitata a 20 MHz** (VERT MENU \rightarrow Bandwidth full \rightarrow 20MHz Bw)

 Calcolate ora il tempo di salita introdotto dall'oscilloscopio a causa della sua banda passante ridotta B₂₀ (20 MHz)

 $t_{s02}=0.35/B_{20}=$ ns.

o Correggete l'effetto dell'oscilloscopio e del tempo di salita dovuto alla sonda

$$t_s = \sqrt{t_{s2}^2 - t_{s02}^2 - t_{ss}^2}$$
 ns

- o Ripetete la misura utilizzando la sonda compensata e confrontare il valore misurato con il precedente
- o Ci sono variazioni? Motivate il risultato

3.4 Misurazione 3

Una prova interessante consiste nel mettere il T con un uscita chiusa su 50 Ω direttamente sul connettore di uscita del generatore invece che all'ingresso dell'oscilloscopio e collegare l'oscilloscopio all'altra uscita del connettore a T mediante il cavetto coassiale.

Si noterà una variazione del tempo di salita misurato e la comparsa di sovraoscillazioni sul fronte. (Questo fenomeno è dovuto alle riflessioni multiple che subisce il fronte del gradino lungo il cavetto di connessione tra T ed oscilloscopio, che da una parte è chiuso su 1 M Ω e dall'altra su 25 Ω).

4 Effetti di Aliasing

4.1 Operazioni preliminari

- Regolate il generatore di segnali in modo da ottenere un segnale sinusoidale, ampiezza 1V senza offset, frequenza 100 kHz.
- o Collegate il generatore all'oscilloscopio con un cavo coassiale.
- o Regolate l'oscilloscopio in modo da visualizzare il segnale (es. 2.5 μs/div).
- Per il segnale generato di 100 kHz, la minima frequenza di campionamento richiesta dal teorema del campionamento vale fc= kHz.
- \circ Leggete sullo schermo (in alto a sinistra) la frequenza equivalente di campionamento¹ f_{co}=

4.2 Aliasing percettivo

- o Riducete la velocità di scansione e osservate come cambia la frequenza equivalente di campionamento.
- Portatevi alla velocità di scansione tale per cui la frequenza di campionamento vale f_{co}= 1 Ms/s.

¹ Nel caso in cui venga utilizzato l'oscilloscopio TDS210, la frequenza equivalente di campionamento non è indicata, ma la si può ricavare conoscendo che la presentazione è fatta con 250 punti per divisione e quindi se si è scelto un fattore di scala orizzontale di 2.5 μs/div risulta feq=100MHz

o Impostate lo strumento per la visualizzazione a punti Menu DISPLY→Dots (in questo modo vengono presentati i campioni acquisiti senza aggiungerne altri per interpolazione)

- o utilizzate il tasto RUN/STOP per osservare la singola acquisizione.
- anche se il teorema del campionamento è soddisfatto in quanto l'oscilloscopio acquisisce 10 punti per periodo, l'immagine non rappresenta una sinusoide.
- Si ha un effetto di perdita di sincronismo e appare una sinusoide a frequenza diversa dai 100 kHz impostati che varia a seconda della frequenza equivalente di campionamento scelta: giusticate questo fenomeno

.....

Provate a modificare di poco la frequenza del generatore (es. 99 kHz) e verificate come cambia la
presentazione

4.3 Effetto dell'aliasing nel dominio del tempo

- Impostate la frequenza del generatore di segnali a fg=101 kHz.
- Riducete ulteriormente la velocità di scansione fino ad avere una frequenza di campionamento pari a f_{co}= 100 kHz (con l'oscilloscopio impostato come per il punto precedente).
- Misurate con l'oscilloscopio la frequenza del segnale osservato (aiutatevi con RUN/STOP per bloccare l'immagine)
- La frequenza apparente che misurate vale fs= Hz.
- Giustificate il fenomeno

.....

.....

- Riportate ora la frequenza del generatore di segnali a fg=100 kHz.
- o Giustificate l'immagine ottenuta.

.....

o Provate altre combinazioni frequenza-segnale/frequenza-campionamento.

5 Rilevazione sincrona di segnali

Lo scopo di questa esperienza è quello di osservare problemi di sincronismo che si verificare su un segnale composito ottenuto per somma di due sinusoidi a frequenza diversa

5.1 Operazioni preliminari

- o Realizzate il circuito sommatore descritto in figura servendovi della piastra per montaggi sperimentali.
- o I valori dei resistori non sono critici.
- Utilizzate cavi coassiali per collegare i generatori alla basetta e le sonde compensate per acquisire i segnali con l'oscilloscopio.
- Per questa parte dell'esperienza vi servono due generatori GEN1 e GEN2 regolati come segue:
 - GEN1 è la scheda utilizzata altre volte e che genera un segnale sinusoidale di frequenza 480 Hz e ampiezza di picco 2 V. (Questi valori sono approssimativi)
 - o GEN2 si predispone per generare una sinusoide, 1 V, no offset, f=2 kHz

- Il segnale visualizzato dal canale 1 è la somma dei segnali dei due segnali: il segnale prodotto dal generatore
- GEN1 (sinusoide a ≅480 Hz) è quello che si vuole misurare mentre quello prodotto dal generatore GEN2 agisce come disturbo.
- Visualizzate il segnale del canale 1 (es. 250 μs/div) sincronizzando l'oscilloscopio sul canale 1 e successivamente sul canale 2.

Tek Run: 1M	IS/S Sa	mple [7	·}]
					-	Edge Source	L
						Ch1	F
						Ch2	F
	₽	ŧ-!- ₽ - - ₽ - - + +-	- 8 -4-1-41-8 -			Ext	F
						Ext/10	F
			M 50µs	Ch1 J	– 160mV	AC \sim AC Line	F
Type Edge	Source Ch1	Coupling DC	Slope 7	Level –160mV	Mode Normal	Holdoff 500ns	ſ
	\square		\square	\square			

• In quale caso e perchè l'immagine è più stabile?

.....

5.2 Misurazione

Con l'oscilloscopio sincronizzato sul canale 2 attivate l'operazione di media.

				Peak Detect (>10µs/div) Envelope	0
				 Average 16	0
Mode Sample	Stop After R/S Button	M 500,	us Ch1 7	0 V	
		$\supset \bigcirc$	\bigcirc		

- Osservate l'effetto del disturbo che si riduce all'aumentare del numero di medie.
- Provate a modificare il segnale di disturbo (ampiezza, frequenza, forma) e il numero di medie.

 In particolare giustificate il fenomeno che si osserva quando lo frequenza del disturbo è un multiplo intero delle frequenza del segnale (circa 4.8 kHz, ma dovrete cercare il valore più adatto misurando l'effettiva frequenza del generatore GEN1 tramite il counter che avete sul banco).

• Verificate l'effetto della media quando l'oscilloscopio è, sincronizzato sul canale 1.

Come esercitarsi a casa

Se non disponete di un oscilloscopio ne potete scaricare una versione virtuale dal sito http://ladispe.eln.polito.it (sezione SWILAB).

Se invece volete lavorare con strumenti reali e possedete un PC, potete trasformare la vostra scheda audio in oscilloscopio, generatore di segnali, voltmetro a vero valore efficace e analizzatore di spettro con il programma disponibile nel sito www.sermis.polito.it (sezione ITP)

Copyright

Questa dispensa è di proprietà del Politecnico di Torino e puo' essere liberamente usata dagli studenti del Politecnico di Torino per la preparazione agli esami, ma è vietato qualsiasi uso diverso. Copyright c°2007 Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy